Announcements

For 09.15.11

The Logic of Boolean Connectives

Truth Tables, Tautologies & Logical Truths

William Starr

09.15.11

William Starr | Phil 2621: Minds & Machines | Cornell University

William Starr | Phil 2621: Minds & Machines | Cornell University

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Outline

- Introduction & Review
- Truth Tables
- 3 Logical Truths & Tautologies
- 4 Equivalence
- **6** Consequence

1 HW1 was due on Tuesday

- If you didn't turn it in, it's late
- 2 HW2 & HW3 are due next Tuesday (09.20)
 - Electronic HW must be submitted before class
 - Written HW must be handed in at beginning of class
 - Otherwise, it's late
- 3 Optional sections have been scheduled
 - Wednesday 1:25-2:10, Uris 307
 - Thursday 1:25-2:10, Uris G22

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Introduction

Truth Functions

- Last class, we learned the meaning of \land , \lor , \neg in terms of truth functions
- We also saw that truth functions allowed us to do something useful:
 - Figure out the truth value of a complex sentence from the truth values of its atomic parts, and vice versa
- For example, we know that $\neg(Cube(a) \lor Cube(b))$ is true in a world where neither a nor b are cubes, since:
 - If $\neg(Cube(a) \lor Cube(b))$ is true, then $Cube(a) \lor Cube(b)$ is false
 - If Cube(a) ∨ Cube(b) is false, then Cube(a) and Cube(b) are false

Introduction

Truth Tables

- These calculations ones like the one we just went through — are a bit clunky
- There's a more elegant method: Truth tables
- As it turns out, truth tables will also provide us with a helpful way to understand 3 core logical concepts:
 - 1 Logical Consequence
 - 2 Logical Truth
 - 3 Logical Equivalence
- Today, we'll learn all about truth tables & these applications!

William Starr | Phil 2621: Minds & Machines | Cornell University

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

The Basics

Step 1: The Reference Columns

- We are going to construct a truth table for
 - (1) $Cube(a) \lor \neg Cube(a)$

First, some columns:

- Reference Columns: columns for each atomic sub-sentence of (1)
- 2 A column for (1) itself

Truth Table for (1) Cube(a) || Cube(a) $\vee \neg$ Cube(a) \mathbf{T} \mathbf{F}

Second, fill the reference columns w/truth values.

• One row for each unique logical possibility

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Review

The Boolean Connectives

Truth Table for \neg Ρ $\neg P$ TRUE FALSE FALSE TRUE

Truth Table for ∧								
Р	$P \mid Q \mid P \wedge Q$							
TRUE	TRUE	TRUE						
TRUE	FALSE							
FALSE	FALSE TRUE FALSE							
FALSE	FALSE FALSE FALSE							

Truth Table for ∨					
Р	$P \lor Q$				
TRUE	TRUE				
TRUE	TRUE				
FALSE	TRUE				
FALSE	FALSE				

- ¬ flips the value
- \bullet \land takes the 'worst' value
- \vee takes the 'best' value

William Starr | Phil 2621: Minds & Machines | Cornell University

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

The Basics

Step 2: Inside Out

Truth Table for (1)					
Cube(a)	$Cube(a) \lor \neg Cube(a)$				
Т	F				
\mathbf{F}	T				

- Third, fill column beneath innermost connective ¬:
 - In the first row, Cube(a) is T so ¬Cube(a) is F
 - In the second row, Cube(a) is F so ¬Cube(a) is T

The Basics

Step 3: The Main Connective

Truth Table for (1)				
$Cube(a) \parallel Cube(a) \lor \neg Cube(a)$				
T	T F			
F	тт			

- Last, fill columns beneath outermost connective \vee :
 - In the first row, Cube(a) is T and ¬Cube(a) is F, so their disjunction is T
 - In the first row, Cube(a) is F and $\neg Cube(a)$ is T, so their disjunction is T
- This column lists every logically possible truth value for (1)

William Starr | Phil 2621: Minds & Machines | Cornell University

12/45

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Reference Columns

There is More to It...

- When you have more than one atomic sub-sentence, filling in the reference columns requires more thought
- Remember that each row of the reference columns lists a unique logical possibility
- Also remember that there is supposed to be a row for every unique possibility
- Okay, well how many rows would we need for a formula with 2 atomic sub-sentences?

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

The Basics

Summary: In General

How to Construct a Truth Table for Any Sentence P

- **1** Reference Columns: Draw a column for each atomic sub-sentence of P, these columns are called the reference columns and are filled with every possible combination of truth-values for the sub-sentences
- 2 Inside Out: Draw a column for P itself. Then fill in the column below P's innermost connective. Repeat for the next innermost connective, until you get to the main connective.
- 3 Main Connective: Fill in the column under the main connective. This row lists the possible truth values of P

William Starr | Phil 2621: Minds & Machines | Cornell University

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Reference Columns

How Many Rows?

Let's figure it out:

- We have 2 atomic sub-sentences
- Each can have 2 different truth values (T.F)
- So there $2^2 = 4$ possible combinations of truth values and atomic sub-sentences
- Therefore, a table for a formula with 2 atomic sub-sentences needs 4 rows

You Always Need 2^n Rows

In general, if there are n atomic sub-sentences of P then there will be 2^n possible assignments of truth values to those atomic sub-sentences, in which case the truth table for P should have 2^n rows.

Another Example

Step 1

- Let's construct a truth table for:
 - $(2) \ \neg(\mathsf{Cube}(\mathsf{a}) \land \mathsf{Cube}(\mathsf{b}))$
- We need 2 reference columns:
 - In them, we need a row for each of the 4 logical possibilities
 - Cube(a) can be T and Cube(b) T; Cube(a) T and Cube(b) F, and so on.

T	Truth Table for (2)						
	Cube(a)	Cube(b)	$\neg (Cube(a) \land \neg Cube(b))$				
	Т	Т					
	${ m T}$	F					
	F	Т					
	F	F					

William Starr | Phil 2621: Minds & Machines | Cornell University

17/45

5

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Building Reference Columns

A Helpful Routine

- You need to list each possibility exactly once when filling in reference columns
- Here's a helpful routine for this:
 - 1 In the innermost ref. column, you alternate T's and F's
 - 2 In the next innermost column, you double that alternation, and so on for any more rows

T	Truth Table for (2)						
	Cube(a)	Cube(b)	$\neg(Cube(a) \land \negCube(a))$				
	T	Т					
	${f T}$	F					
	\mathbf{F}	Т					
	\mathbf{F}	F					

Let's put this routine to work

Another Example

Steps 2 & 3

Truth Table for (2)						
$Cube(a) \mid Cube(b) \parallel \neg (Cube(a) \land \neg Cube(b))$						
Т	T	Т	F	F		
T	F	F	\mathbf{T}	T		
\mathbf{F}	T	Т	F	F		
F	F	T	F	Т		

- Next, the innermost connective ¬:
 - It will flip each value of Cube(b)
- Now, the next innermost \wedge :
 - \(\lambda\) takes worst value of the pair
- Finally, the main connective ¬:
 - ¬ flips the value of the conjunction we just computed

William Starr | Phil 2621: Minds & Machines | Cornell University

18/4

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Yet Another Example Step 1

We'll construct a table for:

$$(3) \ (\mathsf{Cube}(\mathsf{a}) \land \neg \mathsf{Cube}(\mathsf{b})) \lor \neg \mathsf{Cube}(\mathsf{c})$$

Let
$$A = Cube(a), B = Cube(b), C = Cube(c)$$

Tabl	Table for (3)						
Α	В	C	$(A \land \neg B) \lor \neg C$				
Т	Т	Т					
T	Т	F					
T	F	Т					
T	F	F					
F	Т	Т					
F	Т	F					
F	F	Т					
F	F	F					

Table for (2)

- First, the 8 rows of the reference columns:
 - 1 Alternate on innermost column
 - 2 Double this alternation on the next
 - 3 Double again

Yet Another Example

Steps 2 & 3

Table for (3)						
Α	В	С	$(A \land \neg B) \lor \neg C$			
Т	Т	Т	F F F F			
\mathbf{T}	Т	F	F F T T			
\mathbf{T}	F	Т	тттғ			
\mathbf{T}	F	F	тт тт			
F	Т	Т	F F F F			
F	Т	F	F F T T			
F	F	Т	F T F F			
F	F	F	FT TT			

- Next, rows for innermost connectives (¬)
 - ¬B: flips value of B
 - $\neg C$: flips value of C
- Now, the row for the next innermost connective (\wedge)
 - \land takes lowest value
- Finally, the row for the main connective (\vee) :
 - $\bullet \ \lor$ takes highest value

William Starr | Phil 2621: Minds & Machines | Cornell University

21/45

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Boole

An Introduction

- *LPL* contains a program called Boole, which is for constructing truth tables
- Now that you've done a one by hand, you can appreciate how nice of a tool this is!
- Let's run through the basics of Boole by using it to construct a table for (3)

Break into groups of 4-6 and construct a truth table for:

$$(4) (B \lor \neg C) \land \neg A$$

William Starr | Phil 2621: Minds & Machines | Cornell University

22/4

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Truth Tables

- Okay, we've learned how to draw these pretty tables, but how do they help us do logic?
 - 1 Truth tables probe logical possibility
 - 2 This underlies several important concepts:
 - Logical truth
 - Logical consequence
 - Logical equivalence
- Let's see how

Logical Truth

The Basics

Logical Truth

P is a logical truth if and only if it is logically necessary. That is, it is **not possible** for the laws of logic to hold while P is false.

- Logical truths are those sentences which are guaranteed by logic alone to be true
- Logical possibility is different from physical & other kinds of possibility
 - Cube(a) $\vee \neg$ Cube(a) vs. Cube(a) \vee Tet(a) \vee Dodec(a)
 - Traveling the speed of light vs. being a round square
- This sounds vague, can we do any better?
 - Yes, if we use truth tables

William Starr | Phil 2621: Minds & Machines | Cornell University

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Tautologies

Some Examples

- Cube(c) $\vee \neg$ Cube(c) is a tautology
- $\neg(\text{Tet}(a) \land \neg\text{Tet}(a))$ is a tautology
- Tet(a) ∨ Cube(a) is not a tautology

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Tautologies

Tautology

P is a tautology if and only if the truth table for P has only T's in the column under P's main connective

Truth Table for (1)						
Cube(a)	Cube(a)	V	$\negCube(a)$			
Т		Г	F			
F	7	Г	T			

- So, (1) is a tautology
- Intuitively, is (1) a logical truth?
 - Yes!
- So, it looks like the idea of a tautology is a way of making the idea of a logical truth a bit more precise
- This is because truth tables are a precise way of thinking about logical possibility

William Starr | Phil 2621: Minds & Machines | Cornell University

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Tautologies vs. Logical Truths

- Recall that logical truths are sentences which are guaranteed to be true by the laws of logic alone
- All tautologies are logical truths
- But are all logical truths tautologies?
 - In other words, can we just replace the idea of a logical truth with that of a tautology?
- No! Seeing this actually takes a little creativity

A Curious Logical Truth

Which isn't a Tautolgy

• Surely it is a logical truth that Jay is Jay and that Kay is Kay:

(5)
$$j = j \wedge k = k$$

• But consider the truth table for (5):

Truth Table for (5)						
$j = j \mid k = k \parallel j = j \wedge k = k$						
T	Т	Т				
\mathbf{T}	F	F				
\mathbf{F}	Т	F				
F	F	F				

- First, reference columns
- Second, main connective
- But wait, there are F's in that column!
- When you build reference columns, you just list all the combinations
- But, some combinations don't make sense!

William Starr | Phil 2621: Minds & Machines | Cornell University

31/45

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Summary

What We Just Did

- We learned how to construct truth tables, by hand & with Boole
- We then applied truth tables to the problem of precisely defining:
 - 1 Logical truth
- We came up with a similar concept:
 - 1 Tautology
- We saw that all Tautologies are logical truths, but some logical truths are not tautologies

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Tautologies & Logical Truths Summary

Remember

- 1 P is a tautology if and only if every row of the truth table assigns T to P
- 2 If P is a tautology, then P is a logical truth
- 3 But some logical truths are not tautologies
- 4 P is TT-possible if and only if at least one row of its truth table assigns T to P

Let's do exercise 4.5

William Starr | Phil 2621: Minds & Machines | Cornell University

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Equivalence

Two Varieties

Logical Equivalence

Two sentences are logically equivalent if and only if they have the same truth values in every possible situation

• For example: Tet(a) and $\neg\neg Tet(a)$ are logically equivalent

Tautological Equivalence

Two sentences are tautologically equivalent just in case the columns under their main connectives in a joint truth table are identical

• What is a joint truth table?

Equivalence

Joint Truth Tables

• The idea of a joint truth table is quite simple, just add a column on the right for another formula and calculate as before

Joint Truth Table

Р	Q	 ¬ ($P \wedge Q$	∣¬P	\vee $\neg Q$
Т	Т	F	Т	F	F F
T	F	T	F	F	ТТ
F	Т	T	F	T	TF
F	F	T	F	T	тт

- 1 Ref. columns
- 2 Inner connectives
- **3** Main connectives
- The columns under the main connectives are identical
- So, these two sentences are tautologically equivalent

William Starr | Phil 2621: Minds & Machines | Cornell University

36/45

William Starr | Phil 2621: Minds & Machines | Cornell University

37/4

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Consequence

Two Varieties Again

Logical Consequence

C is a logical consequence of P_1, \ldots, P_n just in case it is logically impossible for C to be false while P_1, \ldots, P_n are true

- We've already met this concept of validity/consequence
- It doesn't help us much with figuring out whether an argument is valid
- Proof provides one method, truth tables another:

Tautological Consequence

C is a tautological consequence of $P_1, \dots P_n$ just in case every row in their **joint truth table** that lists T under P_1, \dots, P_n also lists T under C

Equivalence

Logical vs. Tautological

- We started by characterizing two kinds of equivalence
 - 1 Logical
 - 2 Tautological
- Every two sentences that are tautologically equivalent are logically equivalent
- Does the reverse hold?
- No, this pair is logically equivalent:
 - (6) $a = b \wedge Cube(a)$
 - (7) $a = b \wedge Cube(b)$
- But we can show with Boole that they aren't tautologically equivalent

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Tautological Consequence

An Example

Argument 1

Joint Truth Table for Argument 1

Α	В	$A \vee B$	¬A	В
Т	Т	Т	F	Т
\mathbf{T}	F	Т	F	F
F	T	Т	Т	Т
F	F	F	Т	F

- First two columns for the premises
- Last column for conclusion
- \bullet Every row where both premises are T, the conclusion is T
- So B is a tautological consequence of $A \vee B$ and $\neg A$

Tautological Consequence

Another Example: Exercise 4.20

Let's run through exercise 4.20

William Starr | Phil 2621: Minds & Machines | Cornell University

41/45

William Starr | Phil 2621: Minds & Machines | Cornell University

42/45

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Consequence

Questions

- 1 If C is a tautological consequence of P_1, \ldots, P_n , is C a logical consequence of P_1, \ldots, P_n ?
 - Yes, clearly
- 2 If C is a logical consequence of P_1, \ldots, P_n , is C a tautological consequence of P_1, \ldots, P_n ?
 - No, lets show it using Boole to construct a joint truth table for this argument:

Argument 2
$$a = b \land b = c$$

$$a = c$$

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Tautological Consequence

In-Class Exercise

Exercise 4.21

 $\begin{aligned} & \mathsf{Taller}(\mathsf{claire},\mathsf{max}) \lor \mathsf{Taller}(\mathsf{max},\mathsf{claire}) \\ & & \mathsf{Taller}(\mathsf{claire},\mathsf{max}) \\ & & & \neg \mathsf{Taller}(\mathsf{max},\mathsf{claire}) \end{aligned}$

Introduction & Review Truth Tables Logical Truths & Tautologies Equivalence Consequence

Taut Con

Tautological Consequence in Fitch

- Truth tables provide a powerful but purely mechanical procedure to test for logical consequence
- But, they often get really tedious and long
- But, that's what computers are good at
- Fitch has a built-in mechanism for testing for tautological consequence
 - Taut Con
- Much like **Ana Con**, this is not a rule of inference, but a computational mechanism
- Let's run through exercise 4.26

Summary

What we did today

- \bullet We learned how to construct truth tables, by hand & with Boole
- We applied truth tables to the problem of precisely defining:
 - 1 Logical truth
 - 2 Logical equivalence
 - 3 Logical consequence
- We came up with three similar concepts:
 - 1 Tautology
 - 2 Tautological equivalence
 - 3 Tautological consequence
- In each case Tautological implied Logical, but Logical did not imply Tautological

William Starr | Phil 2621: Minds & Machines | Cornell University