Review Universal Introduction General Conditional Proof

Announcements

04.14

Informal Proofs with Quantifiers II Universal Proofs

William Starr

04.14.09

● HW10 is due now

- 2 The final exam is on May 13th from 8-11am
 - If you have a conflict, get in touch w/me ASAP

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

1/30

Review Universal Introduction General Conditional Proof

Outline

- Review
- 2 Universal Introduction
- General Conditional Proof

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

2/2

Review Universal Introduction General Conditional Proof

Two Inference Steps

Existential Introduction & Universal Elimination

Existential Introduction (Official Version)

$$\triangleright \overline{\exists x \, S(x)}$$

(When 'c' names an object in the domain of discourse)

Universal Elimination (Official Version)

$$\triangleright \frac{\forall x \, S(x)}{S(c)}$$

(Where 'c' refers to an object in the domain of discourse)

Two Inference Steps

A Simple Example

Example Argument

 $\begin{array}{c|c}
1 & \text{Tet(a)} \rightarrow \forall x \, \text{Small(x)} \\
2 & \forall y \, \text{Tet(y)} \\
3 & \exists x \, \text{Small(x)}
\end{array}$

Proof:

- From 2 by universal elimination we get Tet(a)
- From this and 1 we get by modus ponens $\forall x \text{Small}(x)$
- Applying universal elimination to this, we get Small(a)
- By existential introduction it follows that: $\exists x \, Small(x) \quad \checkmark$

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

6/3

Peview Universal Introduction General Conditional Proof

Existential Elimination

In Review

The Method of Existential Elimination

- Given $\exists x \, S(x)$, you may give a dummy name to (one of) the object(s) satisfying S(x), say c, and then assume S(c)
- ② However, c must be a new name, i.e. one not already in use in the context of your proof
- Remember, the whole idea of the dummy name is to remain agnostic about which object(s) satisfy S(x)
- In a proof with existential and universal premises:
 - Always apply existential elimination before applying universal elimination
 - This will save you space and possible confusion

Existential Elimination

Background

- Suppose you are given an existential premise and need to use it to prove a conclusion
 - (1) Something is a cube
- ullet Suppose the domain includes only two blocks a and b
- What can you infer from (1)?
 - a is a cube? No!
 - b is a cube? No!
- Here's an idea:
 - We can infer from (1) that there is some block, call it *Frank*, that is a cube
- Then we can continue on in our reasoning as if *Frank* was a real name, even though it's a dummy name (an ersatz)
- This dummy name method turns out to be very useful

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

0 /

Review Universal Introduction General Conditional Proof

Existential Elimination

An Example

Example Argument



Proof:

- First, we apply **existential elimination** to 3 ¬Small(a) (note 'a' is new)
- From 3 by universal elimination we get ¬Tet(a) → Small(a)
- These two facts imply that $\neg Tet(a)$ is false
- From 2 by universal elimination it follows that ¬Tet(a) ∨ Cube(a)
- Since $\neg Tet(a)$ is false, Cube(a) must be true
- By existential introduction it follows that ∃x Cube(x) √

Summary

The Steps and Methods So Far

Method of Existential Elimination

- ① Given $\exists x S(x)$, you may give a dummy name to (one of) the object(s) satisfying S(x), say c, and then assume S(c)
- ② However, c must be a new name, i.e. one not already in use in the context of your proof

Existential Introduction (Official Version)

$$\triangleright \boxed{ \begin{array}{c} S(n) \\ \exists x \, S(x) \end{array}}$$

(When 'n' names an object in the domain of discourse)

Universal Elimination (Official Version)

$$\triangleright \frac{\forall x \, S(x)}{S(c)}$$

(Where 'c' refers to an object in the domain of discourse)

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

11/30

Review Universal Introduction General Conditional Proof

Universal Introduction

Justifying a Universal

- Suppose you are looking at Tarski's World and there are 3 blocks: a, b and c
- Now suppose you are asked to prove the following universal claim:
 - (2) $\forall x \operatorname{Tet}(x)$
- How might you go about it?
 - Consider each object, and show that it satisfies Tet(x)
 - Cumulatively, this process will justify saying that (2) is true in this world
- Call this method the *check-each-object method*

Review Universal Introduction General Conditional Pro-

What We've Done

Taking Stock

- We've learned two inference steps and one proof method for quantifiers:
 - Universal Elimination, Existential Introduction
 - 2 The Method of Existential Elimination
- What's missing from this list?
 - Universal Introduction
- Universal introduction is a proof method and requires the appeal to dummy names familiar from existential elimination
- We'll start with some example inferences

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

13/3

Review Universal Introduction General Conditional Proof

Universal Introduction

The Need for a Better Method

- Consider the fact that:
 - (2) $\forall x \neg [Cube(x) \land Tet(x)]$ This is true of every world
- So, we should be able to prove (2) without considering particular objects from a particular world
- Further, we should be able to prove it even if there were infinitely many objects
- These two facts go against the check-each-object-method:
 - That method requires you to consider particular objects from a particular world
 - It also assumes that it is possible to finish checking every world
- Let's look at a more general method

Universal Introduction

An Example from Tarski's World

Proof: Let c be an arbitrary block. If we assume $Cube(c) \wedge Tet(c)$, then we immediately have a contradiction, since c cannot be both a cube and a tetrahedron. So it must be true that $\neg[Cube(c) \wedge Tet(c)]$ But since c was an **arbitrarily chosen** block, it must be that $\forall x \neg[Cube(x) \wedge Tet(x)]$.

• The key in this proof is the use of a dummy name to talk about an arbitrary block

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

16/30

Review Universal Introduction General Conditional Proof

Universal Introduction

The Important Features of Our Proof

- Notice in our proofs we didn't need to consider a particular set of blocks or math majors
- Our proof method was perfectly general: it works regardless of which set of entities you apply it to
- This generality was achieved by introducing a new name to talk about an arbitrary entity
- Since that entity was selected arbitrarily, when we inferred something about that entity, we were entitled to conclude something about every object
- This is the basic idea behind Universal Introduction

Review Universal Introduction General Conditional Pro-

Universal Introduction

An Example from the Real World

Anyone who passes Phil 201 with an A is smart

Every math major has passed Phil 201 with an A

Every math major has been smart

Proof: Let 'Jessica' refer to any one of the math majors. By the second premise, Jessica must have passed Phil 201 with an A (universal elimination). Then by the first premise, Jessica must have been smart. But since Jessica was an **arbitrarily** chosen math major, it follows that **every** math major was smart.

• The key in this proof is the use of a dummy name to talk about an arbitrary math major

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

17/3

Review Universal Introduction General Conditional Pro

Universal Introduction

The Official Formulation

Universal Introduction

To prove $\forall x S(x)$:

- Introduce a new name c to stand for a completely arbitrary member of the domain of discourse
- Prove S(c)
- \odot Conclude $\forall x S(x)$
- Since c is arbitrary, showing S(c) amounts to showing $\forall x S(x)$
- c's being arbitrary prevents one from assuming that any properties specific to one object are used in the course of the proof

Universal Introduction

Another Example

Example Argument

$\forall x \, \text{Tet}(x)$ $\forall x Medium(x)$ $\forall x (Tet(x) \land Medium(x))$

Proof:

- Let 'c' be an arbitrary block
- From 1 Tet(c) follows by universal elimination
- Applying universal elimination to 2 gives us Medium(c)
- So we have $Tet(c) \wedge Medium(c)$
- But c was arbitrary, so it follows that $\forall x (Tet(x) \land Medium(x)) \checkmark$

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

General Conditional Proof

How to Prove a Universal Conditional

- In practice, we are usually concerned with proving universal claims of these forms:
 - Every A is B
 - All A are B, etc.
- As we all know, these are translated in FOL as:

$$\forall x (A(x) \rightarrow B(x))$$

• To prove this using universal introduction you would prove, for an arbitrary c:

$$A(c) \rightarrow B(c)$$

- This would be achieved using conditional proof:
 - Assume A(c) and show B(c)

Universal Introduction

In Class Exercise

Give an informal proof for:

1
$$\forall y \, \mathsf{LeftOf}(y, b)$$

$$\begin{array}{c|c} 2 & \forall x \left[\mathsf{LeftOf}(\mathsf{x},\mathsf{b}) \to \mathsf{SameSize}(\mathsf{x},\mathsf{a}) \right] \\ 3 & \forall \mathsf{x} \, \exists \mathsf{y} \, \mathsf{SameSize}(\mathsf{x},\mathsf{y}) \end{array}$$

$$\exists \forall x \exists y \, \mathsf{SameSize}(x, y)$$

Hint: use universal introduction. Premise 2 says Every block left of **b** is smaller than **a**. The conclusion says that Every block is smaller than some block or other.

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

Conditional Proof

Review of Conditional Proof

The Method of Conditional Proof

To prove $P \rightarrow Q$, temporarily assume P. If you can show Q with this additional assumption, you can infer $P \rightarrow Q$

Truth Table for \rightarrow Т Т Т Т

F

- The only way for $P \rightarrow Q$ to be F is for P to be true and Q be F
- So, if you can show that when P is T Q is also T, you've shown that $P \rightarrow Q$ cannot be false, i.e. that it is true!

Conditional Proof

Review of Conditional Proof: An Example

Let's use conditional proof and modus ponens to give a proof of:

ARGUMENT 1

Our goal is a conditional, so we use conditional proof.

Proof: Suppose Tet(a). Then by premise 1 Tet(b) follows by modus ponens. But then we may now again use modus ponens and premise 2 to infer Tet(c). This is the consequent of our goal, so we have successfully completed our conditional proof.

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

General Conditional Proof

An Example

Proof:

- Let a name an arbitrary block
- Suppose Small(a) (Goal: Show Cube(a))
- From premise 1: $Small(a) \rightarrow \neg Tet(a)$
 - \bullet By modus ponens, we get $\neg Tet(a$
- Premise 2 gives us $\neg Tet(a) \rightarrow Cube(a)$, so by modus ponens we have Cube(a), (our goal)

Example Argument

 $\forall x [(\mathsf{Small}(x) \to \neg \mathsf{Tet}(x))]$

 $\forall x [\neg Tet(x) \rightarrow Cube(x)]$

 $\forall x [Small(x) \rightarrow Cube(x)]$

• Since a was arbitrary, it follows that $\forall x [Small(x) \rightarrow Cube(x)]$

General Conditional Proof

Universal Instantiation Plus Conditional Proof

- Proofs will often involve using conditional proof & universal introduction together
- So, let's introduce a short-cut & name for it

General Conditional Proof

To prove $\forall x (A(x) \rightarrow B(x))$:

- 1 Introduce a new name c to stand for a completely arbitrary member of the domain of discourse
- Assume A(c)
- Prove B(c)
- Onclude $\forall x (A(x) \rightarrow B(x))$
- This is equivalent to using universal introduction along with conditional proof

Example Argument

 $\forall x [(Cube(x) \lor Large(x))]$

 $\forall x [Tet(x) \rightarrow \neg Smaller(x, c)]$

 $\forall x [Medium(x) \rightarrow \neg Smaller(x, c)]$

 $\vee (Medium(x) \wedge Tet(x))]$

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

Review Universal Introduction General Conditional Proof

General Conditional Proof

Another Example

Proof:

- Let a name an arbitrary block
- Suppose Medium(a) (Goal: Show \neg Smaller(a, c))

• From premise 1:

 $(Cube(a) \land Large(a)) \lor (Medium(a) \land Tet(a))$

- Since Medium(a), the first disjunct must be false, and $Medium(a) \wedge Tet(a)$ must be true
- Premise 2 gives us $Tet(a) \rightarrow \neg Smaller(a, c)$, so by modus ponens we have $\neg Smaller(a, c)$, (our goal)
- Since a was arbitrary, it follows that $\forall x [Medium(x) \rightarrow \neg Smaller(x, c)]$

General Conditional Proof

In Class Exercise

Give an informal proof for:

$$\begin{array}{c|c} 1 & \forall y \left[\exists x \, \mathsf{Tet}(\mathsf{x}) \to \mathsf{LeftOf}(\mathsf{y}, \mathsf{b}) \right] \\ 2 & \forall x \left[\mathsf{LeftOf}(\mathsf{x}, \mathsf{b}) \to \mathsf{Smaller}(\mathsf{x}, \mathsf{a}) \right] \\ 3 & \forall x \left[\mathsf{Tet}(\mathsf{x}) \to \mathsf{Smaller}(\mathsf{x}, \mathsf{a}) \right] \end{array}$$

Hint: use the method of general conditional proof, along with universal elimination, existential introduction and modus ponens.

Review Universal Introduction General Conditional Proof

Universal Proof

Summary

Summary

- To prove a universally quantified claim, use Universal Introduction
 - E.g. to prove $\forall x \text{Tet}(x)$, use Univ. Intro.
- 2 When proving a universal conditional, you may use General Conditional Proof
 - This is just Univ. Intro. together with Conditional Proof
- 3 These are both proof methods
- Next class, we will learn how to mix Univ. Intro. with the method of Existential Elimination

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

29/30

William Starr — Informal Proofs with Quantifiers II (Phil 201.02) — Rutgers University

-- --