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Satisfaction
The Basic Idea

• Truth tables don’t allow us to analyze the meaning of
quantifiers

• Instead, we used Tarski’s idea of satisfaction

• Here’s the intuition behind satisfaction

• Cube(x) is neither true nor false, we can think of it
being true of an object o

• Tarski: satisfaction is being true of an object

Example o satisfies Small(x) ∧ Cube(x) if and only if o is
a small cube
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Satisfaction
The Precise Definition

Definition of Satisfaction

An object o satisfies a wff S(x) containing x as its only free
variable iff the following two conditions are met:

1 If we give a o a name that’s not in use, call it ni, then
S(ni) is true

2 S(ni) is the result of replacing every occurrence of x in
S(x) with ni

• Let’s work through a quick example in Tarski’s World
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Existential Statements
When are They True?

The Point of Satisfaction

• Why do we care about satisfaction?

• Because it allows us to state the truth-conditions of
quantified sentences!

• Something is strange is true if and only if there is some
object o and o is strange

• Truth of ∃x Strange(x) determined similarly:

• ∃x Strange(x) is true if and only if some object o
satisfies Strange(x)

• How do we figure out whether o satisfies Strange(x)?
• Give o an unused name n, check whether Strange(n)

comes out true
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Existential Statements
Official Semantics

Semantics for ∃
∃x S(x) is true if and only if there is at least one object that
satisfies S(x)

Example

When is ∃x (Large(x) ∧ Tet(x)) true?

• By the semantics for ∃:
(1) If there is at least one object that satisfies

Large(x) ∧ Tet(x)

• By the definition of satisfaction (1) amounts to:

• If when we give o some unused name n,
Large(n) ∧ Tet(n) comes out true
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Existential Statements
The Game Rule for ∃

Game Rule for ∃
Given ∃x S(x):

Your Commitment Player to Move Goal
true you Choose some o

that satisfies
false Tarski’s World S(x)

• S(x) is any wff containing a free occurrence of x:
• Cube(x)
• Cube(x) ∧ ∃y Small(y)
• ¬(∀y Tet(y)→ (Small(x) ∨ Cube(a)))

• Let’s play some games in Tarski’s World!
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Universal Statements
When are They True?

• Everything is on fire is true if and only if for every
object o, o is on fire

• Truth of ∀x OnFire(x) determined similarly:

• Consider whether every object o in the domain of
discourse satisfies OnFire(x)

• That is, for every object o see whether when you give
it an unused name n, OnFire(n) comes out true

• If so, then ∀x OnFire(x) is true
• Otherwise, it is false

• Okay, let’s see that precise definition
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Universal Statements
Official Semantics

Semantics for ∀
∀x S(x) is true if and only if every object satisfies S(x)

Example

When is ∀x (Cube(x) ∧ Small(x)) true?

• By the semantics for ∀:
(2) Iff every object o satisfies Cube(x) ∧ Small(x)

• By the definition of satisfaction (2) amounts to:

• Iff when we give each o some unused name n,
Cube(n) ∧ Small(n) comes out true

• Let’s go to Tarski’s World
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Universal Statements
The Game Rule for ∀

Game Rule for ∀
Given ∀x S(x):

Your Commitment Player to Move Goal
true Tarski’s World Choose some o

that does not
false you satisfy S(x)

• S(x) is any wff containing a free occurrence of x

• Let’s play some games in Tarski’s World
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Semantics for the Quantifiers
Summary

• We have learn two methods for understanding the
meaning of ∀ and ∃:

1 Our satisfaction-based definition of when ∀S(x) and
∃x S(x) are true

2 Our game-rule definition, which says how committing
to the truth or falsity of a quantified formula affects a
game based on that formula

• We just saw the deep parallel in these two methods

• The game just carries you through the steps you’d go
through if you applied the semantics for ∀ or ∃ and
then the definition of satisfaction
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The Four Aristotelian Forms
What they Are

The Four Aristotelian Forms

1 All A’s are B’s

2 Some A’s are B’s

3 No A’s are B’s

4 Some A’s are not B’s

• These are four of the most common quantificational
sentences used in quantificational reasoning

• We can represent all of them in fol now that we have
∀ and ∃

• Today, we’ll learn how
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The First Aristotelian Form
All A’s are B’s

The Form: All A’s are B’s

(3) All rabbits are vicious

Paraphrase For every x, if x is a rabbit then x is
vicious

Translation ∀x (Rabbit(x)→ Vicious(x))

• This translation has the form: ∀x (A(x)→ B(x))

General Fact

All A’s are B’s translates as ∀x (A(x)→ B(x))
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The Second Aristotelian Form
Some A’s are B’s

The Form: Some A’s are B’s

(4) Some professors are vicious

Paraphrase Some thing x is both a professor and
vicious

Translation ∃x (Professor(x) ∧ Vicious(x))

• This translation has the form: ∃x (A(x) ∧ B(x))

General Fact

Some A’s are B’s translates as ∃x (A(x) ∧ B(x))
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The Second Aristotelian Form
Comments

• We’ve learned two facts:

1 All As are Bs translates as ∀x (A(x)→ B(x))
2 Some As are Bs translates as ∃x (A(x) ∧ B(x))

• Why do we use → in one case, and ∧ in the other?

• Why don’t we translate Some As are Bs as
∃x (A(x)→ B(x))?

• We’ll see this by doing exercise 9.8
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The Third Aristotelian Form
No A’s are B’s

The Form: No A’s are B’s

(5) No students are drunk

Paraphrase 1 For every x, if x is a student then x is not
drunk

Paraphrase 2 It is not the case that for some x, x is a
student and x is drunk

Translation 1 ∀x (Student(x)→ ¬Drunk(x))
Translation 2 ¬∃x (Student(x) ∧ Drunk(x))

• Translation 1 has the form: ∀x (A(x)→ ¬B(x))

• Translation 2 has the form: ¬∃x (A(x) ∧ B(x))

• These are equivalent, and we’ll eventually prove it
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The Third Aristotelian Form
No A’s are B’s (Continued)

General Fact

No A’s are B’s translates as:

∀x (A(x)→ ¬B(x))

Or:

¬∃x (A(x) ∧ B(x))
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The Fourth Aristotelian Form
Some A’s are not B’s

The Form: Some A’s are not B’s

(6) Some excuses are not believable

Paraphrase For some x, x is an excuse and x is not
believable

Translation ∃x (Excuse(x) ∧ ¬Believable(x))

• This translation has the form: ∃x (A(x) ∧ ¬B(x))

General Fact

Some A’s are not B’s translates as ∃x (A(x) ∧ ¬B(x))
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The 4 Aristotelian Forms
Summary

The Aristotelian Forms and Their Translations

All A’s are B’s ∀x (A(x)→ B(x))
Some A’s are B’s ∃x (A(x) ∧ B(x))

No A’s are B’s ∀x (A(x)→ ¬B(x))
Some A’s are not B’s ∃x (A(x) ∧ ¬B(x))
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In-Class Exercise
Translation!

(7) All cars are vehicles

• ∀x (Cars(x)→ Vehicle(x))

(8) Some vehicles are expensive

• ∃x (Vehicles(x) ∧ Expensive(x))

(9) No vehicles are students

• ∀x (Vehicle(x)→ ¬Student(x))

(10) Some students are not vehicles

• ∃x (Students(x) ∧ ¬Vehicles(x))
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Beyond the Second Form
What to Do

• Translate:

(11) Some cubes are in front of c

• It has the second form: Some A’s are B’s . So:

∃x (Cube(x) ∧ FrontOf(x, b))

• What about:

(12) Some small cubes are in front of c

That’s not one of the forms we know!

• Still, it’s pretty obvious how it should go:

∃x (Small(x) ∧ Cube(x) ∧ FrontOf(x, b))
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Beyond the Second Form
Multiply Restricted Existentials

• From the second form, we know that you restrict ∃
with ∧

• An existential quantifier multiply restricted means
multiple conjuncts restricting ∃:

(13) Some cute little kitten ate Alex

∃x (Cute(x) ∧ Little(x) ∧ Kitten(x) ∧ Ate(x, alex))

(14) A small rat scared Jay

∃x (Small(x) ∧ Rat(x) ∧ Scared(x, jay))

(15) At least one small cube in front of b is left of c

∃x (Small(x) ∧ Cube(x) ∧ FrontOf(x, b) ∧ LeftOf(x, c))
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Beyond the First Form
What to Do?

• Translate:

(16) All cubes are in front of c

• It’s form is All A’s are B’s, so:

∀x (Cube(x)→ FrontOf(x, b))

• What about:

(17) All small cubes are in front of c

• That’s not one of the forms we know!
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Beyond the First Form
What to Do

• We know that you restrict ∀ with → (1st Form)

• A universal quantifier multiply restricted means
multiple restrictions of ∀ with →:

(18) All cute little kittens hate Alex

∀x (Cute(x)→ (Little(x)→ (Kitten(x)→ Hate(x, alex))))

(19) Every small rat scared Jay

∀x (Small(x)→ (Rat(x)→ Scared(x, jay)))

(20) Every small cube in front of b is left of c

∀x (Small(x)→ (Cube(x)→ (FrontOf(x, b)→ LeftOf(x, c))))
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Beyond the First Form
Using ∧ Instead of →

• Instead of nesting →, you can use conjoin the
restrictions into one:

∀x (Cute(x)→ (Little(x)→ (Kitten(x)→ Hate(x, alex))))

Is Equivalent to:

∀x ((Cute(x) ∧ Little(x) ∧ Kitten(x))→ Hate(x, alex))

• This is because of the following general equivalence:

A→ (B→ C) ⇐⇒ (A ∧ B)→ C
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Subjects and Objects
Some Terminology

• Some predicates like love relate two things:

(21) Kay loves Jay

• When you have a predicate that relates two things, it’s
helpful to have some terminology to distinguish those
two things

• Kay is the subject

• Jay is the object

• Intuitively, the subject is what the sentence is
primarily about
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Roaming Quantifiers
In Object Position

• So far, we’ve only considered sentences with quantifiers
in subject-position:

(22) Every cube is in front of b

• What about when you have a quantifier in
object-position?

(23) b is in front of everything

• Just stick ∀ out in front of the predicate, and ‘quantify
into’ the object position

∀x FrontOf(b, x)
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Roaming Quantifiers
More on Object Position

• Okay, but what happens when the quantifier in object
position is restricted

(24) b is in front of every cube

• You have to move its restrictor out front too:

(24′) ∀x (Cube(x)→ FrontOf(b, x))

• This holds for multiply restricted ones too:

(25) b is in front of every small cube

Translates as:

(25′) ∀x ((Cube(x) ∧ Small(x))→ FrontOf(b, x))
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Roaming Quantifiers
Some More Examples

(26) shows that you move the restrictors to the left of the
predicate, but no further!

(26) a. It’s not the case that b is a large cube
b. ¬∃y (Large(y) ∧ Cube(y) ∧ b = y)

(27) a. It’s not the case that something is a large cube
b. ¬∃y (Large(y) ∧ Cube(y) ∧ ∃x x = y)

(28) a. Everything between c and b is a
b. ∀x (Between(x, c, b)→ x = a)

(29) a. Everything between c and b is a cube
b. ∀x (Between(x, c, b)→ ∃y (Cube(y) ∧ x = y))
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An Oddity
Existentials in Conditionals

• Consider:

(30) If a yokel drools, he snores

• a is existential, right?

• So, it seems like we should translate (30) as:

(31) ∃x ((Yokel(x) ∧ Drools(x))→ Snores(x))

• This requires at least one yokel that drools to snore

• Is that strong enough?
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An Oddity
Existentials in Conditionals are Universal?

• Most people get the intuition that:

(30) If a yokel drools, he snores

Is equivalent to:

(32) Every yokel who drools snores

• But then (30) shouldn’t be translated with ∃ as in
(31), but rather:

(33) ∀x ((Yokel(x) ∧ Drools(x))→ Snores(x))

• So, beware, in conditionals, existentials sound like
universals
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