Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Quantification What We've Done

Multiple & Mixed Quantifiers

Understanding Quantification

William Starr

11.01.11

William Starr | Phil 2310: Intro Logic | Cornell University

1/25

William Starr | Phil 2310: Intro Logic | Cornell University

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Quantification

We are Just Getting Started

- This is a good start, but there is a lot more to understanding the logic of quantifiers
- Today we are going to think about what sentences containing multiple quantifiers mean
- As well as how to translate them into FOL
- We've only looked at sentences w/1 quantifier:
 - All basketballs are orange
 - Some ninjas are not sociable
- But what happens when there are 2, 3 or 4 quantifiers?

- \bullet So far, we've learned what \forall and \exists mean
 - Recall the **semantics** and **game rules**
 - Both based onsatisfaction
- **2** Use \forall and \exists for translation of quantifiers
 - Remember the four Aristotelian Forms
- 3 Two logical concepts
 - FO Validity
 - Logical truth restricted to $\forall, \exists, =, \neg, \land, \lor, \rightarrow, \leftrightarrow$
 - FO Consequence
 - Logical consequence restricted to $\forall, \exists, =, \neg, \land, \lor, \rightarrow, \leftrightarrow$
 - We test for these using the replacement method

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Quantification

Multiple Quantifiers

Recall what old Abe said:

You may fool all of the people some of the time; you can even fool some of the people all of the time; but you can't fool all of the people all of the time

- Count the quantifiers: 6!
- The point:
 - We often communicate logically interesting things with several quantifiers
- So, as students of logic, we need learn how to mix multiple quantifiers

Multiple Existentials

A Simple Example

- We will begin by considering sentences with multiple occurrences of one quantifier
 - (1) Some cube is left of some tetrahedron
- How should we represent (1) in FOL?
- We have many options
- Let's consider and compare them

William Starr | Phil 2310: Intro Logic | Cornell University

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Multiple Existentials

Multiplicity of Translations

- In addition to:
 - (1a) $\exists x \exists y [Cube(x) \land Tet(y) \land LeftOf(x, y)]$
 - (1b) $\exists x [Cube(x) \land \exists y (Tet(y) \land LeftOf(x, y))]$
 - We can put things in the reverse order:
 - (1c) $\exists y \exists x [Cube(x) \land Tet(y) \land LeftOf(x, y)]$
 - (1d) $\exists y [Tet(y) \land \exists x (Cube(x) \land LeftOf(x, y))]$
 - Or put the predicates in a different order:
 - (1e) $\exists x \exists y [\mathsf{Tet}(y) \land \mathsf{Cube}(x) \land \mathsf{LeftOf}(x,y)]$
 - (1f) $\exists x [Cube(x) \land \exists y (LeftOf(x, y) \land Tet(y))]$
- Let's look at these in Tarski's World to see that they are equivalent (Equivalences.sen /.wld)

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Multiple Existentials

Translating our Simple Example

- (1) Some cube is left of some tetrahedron
 - Two (of the many) correct translations:
 - (1a) $\exists x \exists y [Cube(x) \land Tet(y) \land LeftOf(x, y)]$
 - There are objects x and y such that: x is a cube. y is a tetrahedron and x is left of y
 - (1b) $\exists x [Cube(x) \land \exists y (Tet(y) \land LeftOf(x, y))]$
 - There is an object x such that x is a cube and there exists an object y such that y is a tetrahedron and x is left of y
 - (1a) stacks all of the quantifiers at the beginning
 - This makes it easier to paraphrase
 - But less like the English (1)!

William Starr | Phil 2310: Intro Logic | Cornell University

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Translation Convention

A Helpful Note

Translation Conventions (Stylistic Advice)

- 1 All quantifiers are stacked up 'out in front'
- 2 1st quantifier in English sentence is written 1st and binds x, 2nd goes 2nd and binds y, etc.
- 3 List predicates in order of quantifiers they restrict
 - Translate: some cube is left of some tetrahedron (1a) $\exists x \exists y [Cube(x) \land Tet(y) \land LeftOf(x, y)]$
 - Rather than:
 - (1e) $\exists x \exists y [\mathsf{Tet}(y) \land \mathsf{Cube}(x) \land \mathsf{LeftOf}(x,y)]$
 - Cube(x) goes before Tet(y) since $\exists x$ come before $\exists y$, Left(x, y) goes last since it restricts neither $\exists x$ nor $\exists y$

Translation

Comments on Our Convention

- In general, there are very many different but equally correct ways of translating quantified sentences
 - Especially in sentences with multiple quantifiers
 - By equally correct we mean FO Equivalent
- Conventions on previous slide are sylistic
- Prenex Form: all of a formula's quantifiers are stacked up at the front of the formula
 - Like: $\exists x \exists y (Cube(x) \land Tet(y))$
 - Not: $\exists y (Cube(x) \land \exists y Tet(y))$
- Everything we've said so far also holds for sentences containing multiple universal quantifiers

William Starr | Phil 2310: Intro Logic | Cornell University

12/25

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Multiple Quantifiers

An Important Fact

Fact 1 (Multiplied Quantifiers)

When you have multiple occurrences of a single quantifier, order does not matter:

- 2 $\forall x \forall y P(x, y) \Leftrightarrow \forall y \forall x P(x, y)$

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Multiple Universals

- (2) Every tetrahedron is larger than every cube
 - Given our conventions, the natural translation is:

$$(2a) \ \forall x \, \forall y \, [(\mathsf{Tet}(x) \wedge \mathsf{Cube}(y)) \to \mathsf{Larger}(x,y)]$$

- For every block x and every block y, if x is a tetrahedron and y is a cube then x is larger than y
- But this is equivalent to (among others):

(2b)
$$\forall x [\mathsf{Tet}(x) \to \forall y (\mathsf{Cube}(y) \to \mathsf{Larger}(x, y))]$$

 Let's look at Tarski's World (Equivalences.sen / .wld)

William Starr | Phil 2310: Intro Logic | Cornell University

14/2

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

A Tricky Fact

Resisting the Temptation...

- It is tempting to paraphrase:
 - (3) $\forall x \forall y [(Small(x) \land Cube(y)) \rightarrow RightOf(x, y)]$

As:

- (4) For every block x and every **other** block y, if x is small and y is a cube then x is right of y
- But RESIST!
 - (4) is **not** what (3) means
- (4) is really a paraphrase of:
 - $(5) \quad \forall x \, \forall y \, [(x \neq y \land \mathsf{Small}(x) \land \mathsf{Cube}(y)) \rightarrow \mathsf{RightOf}(x,y)]$
- (3) and (5) are not equivalent
- See this in TW (Identity.sen, Identity.wld)

The Tricky Fact

The Moral of the Story

The Tricky Fact

- When evaluating sentences with multiple quantifiers, don't fall into the trap of thinking that distinct variables range over distinct objects
- 2 In fact, $\forall x \forall y P(x, y)$ logically entails $\forall x P(x, x)$, so the variables can't be assumed to range over distinct variables. (The same goes for \exists)

William Starr | Phil 2310: Intro Logic | Cornell University

18/25

25

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Mixing Quantifiers

Doing Things Differently

- In addition to repeating the same quantifier, you can mix quantifiers:
 - (6) Everyone loves someone or other
 - (7) There is someone that everyone loves
- Both (6) and (7) mix a universal and an existential
- But, they do it differently:
 - (6) is a *Universal Existential*
 - (7) is an Existential Universal
- Accordingly, we translate (6) and (7) differently:
 - $(6') \forall x \exists y (Love(x, y))$
 - $(7') \exists y \forall x (Love(x, y))$

William Starr | Phil 2310: Intro Logic | Cornell University

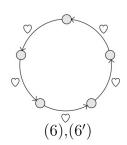
20/25

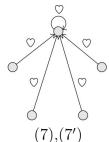
Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Mixing Quantifiers

The Difference in Meaning is Big

- (6) Everyone loves someone or other
- $(6') \forall x \exists y (Love(x, y))$
- (7) There is someone that everyone loves
- (7') $\exists y \forall x (Love(x, y))$
 - (6)/(6') and (7)/(7') describe different situations:





Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Mixing Quantifiers

Entailment Relations

- (6) Everyone loves someone or other
- (6') $\forall x \exists y (Love(x, y))$
- (7) There is someone that everyone loves
- $(7') \exists y \forall x (Love(x, y))$

Fact

(7) entails (6). By (7) there's some person, call him/her Pat, that everyone loves. It follows that everyone loves someone (or other), namely Pat!

Fact

(6) does not entail (7). Everyone could love a different person. Then (6) is true but (7) is not

Mixing Quantifiers

The Important Difference

- What examples (6) and (7) show is that when you mix quantifiers order does matter!
- This is very different from multiple occurrences of a single quantifier:
 - In that case, order does not matter
- To solidify the difference between *existential-universal* and *universal-existential* let's look at some examples in Tarski's World (MQ World.wld, MQ World 2.wld, MQ Sentences.sen)

William Starr | Phil 2310: Intro Logic | Cornell University

23/25

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Exercise

Mixed Quantifiers in Tarski's World

11.11 (Building a world) Create a world in which all ten sentences in Arnault's Sentences are true.

Introduction Multiple Uses of One Quantifier Mixing Quantifiers

Summary

Two Facts

Fact 1 (Multiplied Quantifiers)

When you have multiple occurrences of a single quantifier, order does not matter:

Fact 2 (Mixed Quantifiers)

When you have multiple occurrences of different quantifiers, order does matter:

•
$$\forall x \exists y P(x, y) \Leftrightarrow \exists y \forall x P(x, y)$$

William Starr | Phil 2310: Intro Logic | Cornell University

24/21